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TECHNICAL NOTE NO. 1727

A STMPLIFIED METHOD FOR THE DETERMINATION AND ANALYSIS OF

THE NEUTRAI~LATERAL~OSCILLATORY-STABILITY BOUNDARY

By Leonard Sternfield and Ordway B. Gates, Jr.
SUMMARY

A necessary condition for neutral oscillatory stability is that
Routh's discriminent R, formed from the coefficients of the stability

equation, is equal to zero. The expression for R 1s D(BC — AD) — BZE
where A, B, C, D, and E are the coefficients of the lateral—stability
equation. TIn a large number of the cases considered in this study, 1t
has been found that the term. B2E may be neglected. "Routh's discrimi-—
nant is then factorable into two simplified expressions, that

1s, BC —AD= R; bnd D; eand elther R, =0 or D =0, or both,

may constitute a condition of neutral stability. Test functions have

been derived which, if satlisfied, indicate that the simplified expressions

may be used to approximate R = 0. If Ry =0 and D =0 satisfy ths

necessary and sufficient conditions for a neutral—oscillatory—stability
boundary, D = O represents the boundary for the oscillation which has
a period comparatlively longer than the period of oscillation for

which Ry = O is the boundary.

In general, the results of the computations obtained from Ry =0

and D = 0 show very good agreement with the results calculated by the
exact expression for B = O. The nature of the modes of motion as 2
function of the directiocnal-stebility derivative and the effective—
dihedral derivative 1s discussed in detail.

~

INTRODUCTION

The results of recent investigations (references 1 and 2 and

unpublished results of lateral-—stebility analyses for several experimental
high-speed airplanes) have indicated that small variations in soms of the
airplane mass and aérodynamic parameters may cause a pronounced change in

the oscillatory stability of the airplane. It has been difficult to

explain the reasons for such pronounced changes because of the complexity

of the expression for neutral oscillatory stabllity. This expression,
based on the lateral—stability equations with three degrees of freedom,
involves a large number of combinations of the mass and aerodynamic

parameters. In order to predict the stability of the lateral oscilllation,
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therefore, it appears necessary to meke a separate stability analysis
for each alrplane.

The simpllfied expressions derived for the meutral—oscillatory—
stability boundary in the present theoretical investigation simplify
the calculations required to obtain the boundary in the analysis
esgential for each alrplane. Because of the comparative simplicity of
these expresslions, en insight into the important conmbinations of mass
and aerodynamic parameters that affect the lateral osclllatory stability
is also provided. Through further Investigatlion and analysis of the
effects of these major parameters, the necessity of making separate
calculations for each airplane might possibly be eliminated. Test
functions are given which, 1f satisfied, indlicate that the simplified
expressions may be used.

The nature of the modes of motion as a function of CnB and ‘Clﬁ,

the directicnal—stablility derivative and effective—dihedral derivative,
respectively, are shown to depend upon the locatlon of the stability

boundaries plotted as a function of an and CIB.

The results of the calculatlions based on the simplified expressions

are presented for comparison with the results obtained by the complete
expression for the msutral—osclllatory—stabllity boundary.

SYMBOLS AND COEFFICIENTS

¢ angle of bank, radians

¥ angle of azimuth, radians

B angle of sideslip, radians (v/V)

v sildeslip velocity along the Y-—axis, feet per second
v airspeed, Teet per second

p masgs density of alr, slugs per cubié foot

q dynamic pressure, pounds per square foot (%3N2>

b wing span, feet

S wing area, square feet

W welght of airplane, pounds
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m mass of alrplane, slugs (W/g)

g accelerafion due to gravity, feet per second per second

By relative—density factor (m/pSb)

7 inclination of principal longltudinal axis of alrplane with

respect to flight path, positlive when principel axis is
above flight path at the nose, degrees (smee fig. 1)

e angle between reference axis and horizontal axis, positive
vhen reference axis is above horizontal axis, degrees
(see fig. 1)

€ angle between reference axis and princlpal axis, positive
when reference axis is above principal axis, degrees
(see Pig. 1)
V4 engle of flight path to horizontal axis, positive in a
climb, degrees (see fig. 1)
kx radius of gyration In roll about principal longitudinal axis,
0 feet
ky radius of gyration In yaw about principal vertical axis, feet
(o]
Ki nondimenaional radlius of gyration in roll about principal
o © longitudinel exis (kxo/‘b>
KZ nondimensicnal redius of gyration in yaw about principal
o]
vertical axis (kZO/b)
Ky nondimensicnal radius of gyration 1n roll about longltudinal

stability axis (\/Kkoe cos?y + KZOQ sinen)

Ki nondimensional radius of gyration in yaw about vertical

2 2 2 2 )
in
stability axis (\/%20 cos“n + Kio sin“y
Kkz nondimensional product—of—inertia parameter

| ((KZOQ —-Kiog) sin ﬁ cos n)
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trim 11ft coefficient (‘2‘5—7)
qS

. . Rolling moment
rolling—moment coefficlent 55
yawing-moment coefficient (Yaﬁnﬁsﬁom@t)
lateral—force coefficient L&tera.lsforce)
q;

effective—dihedral derivative, rate of change of rolling—
moment 3oefficient with angle of sideslip, per radian

(30,/%8

directional—stability derivative, rate of change of yawing—
moment coefficient with angle of sldeslip, per radlan

(3o

lateral—force derivative, rate of change of lateral—force
coefficient with angle of sidesllp, per radian

(acr/aﬁ

damping—in-yaw derivative, rate of change of ya.ﬁing—moment
coefficlent with yaving—a.ngular—velocity factor, per radian

rb
(20ar2%%)
rate of change of ya.wi\ng—momen'b coefficlent with rolling-—
pb N
angular—velocity factor, per radian (acn/aﬁ)

damping—in—roll derivative, rate of change of rolling—
moment coefficient with rolling—engular—veloclty factor,

per radian (BCZ/B%))

rate of change of rolling-moment coefficlent with yawing—
angular—velocity factor, per radian (BC /BE—)

rate of change of lateral—force coefficient with rolling—
angular-velocity factor, per radian (BGY/B:E—>

rate of change of lateral—force coefficient with yawing—
angular-velocity factor, per radian <BCY/812—".3)

time, secaonds

- — = — = e —————————
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8, nondimensional tims parameter based on span (Vt/%)
Dy differential operator <—-gsb>
R Routh's discriminant
A complex root of stabllity equation
X prim3iafimrr=o 7 (A =¢ £ i)
At complex root of stabillity equation
Bt eB3 s a2+ DAt +E = 0 (At = E7 & doT)
P period of osclllation, seconds
Tl/é time for amplitude of oscillation to change by factor of 2

(positive value indicates a decreass to half—amplitude,
negative value indicates an increase to double amplitude)

AB,C,D,E coefficients of lateral-stabllity equation
EQUATIONS OF MOTION

The nondimenslonal linearized equations of motion, referred to the
stabllity axes, used to calculate the splral—stabllity and oscillatory—
stablllity boundaries for eny flight condition, are:

Rolling .

2in, (K D%+ gDy 2¥) = €3 8 + 30, Do + 50, By

P

Yawing

2y (KZnggw + KiZDb2¢> = CnBB * %Cnpr¢ * %Cn Dy

B8ldeslipping

2y, (DbB £ Dbllf) = CYBB + %cypnbg# + Crf + %cyrnbw + (cL tan 7)’4’

,,,,,, e e e e e T e i ¢ oy P ———— it ¥ . Y o r—— i = < -~
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s A A
When ¢oesb is substituted for ¢, \#Oesb for, ¥, and Boesb

for B, In the equations written in determinant form, ) must be a
root of the stability equation

) Btim3salsm+E=0 (1)

where

‘ A=y’ (KXQKZQ - sze)
2 2 2 2 2
B =— o2 (aKzKZoYB+Kchr+KZozp—EKXZCYB
~ KggCy, — szcnp)
C=|J.(K2CDGY * R Po, + K50 0y + Loy 0 —KpCo Gy
P\"X “n_ “¥g ng pYg 2 Mrly . 1B
: 1 2
B R e A N T
— Ky Cy Cp + Ky C
L o B XY ZB)
R | — 1
D = - C,C107p ~ 101 Ong + i G O2,Cr + 1aCa Oug
2
+ Q“bCLKXZCnB - 2“bCLKZQCZB i 2”bKX CnBcI- tan ¥
1 1
+ E“bezCzBCL tan y + i CZPC%ch . CDPC.LBCYr

1 1
~ 3 CuCnglrp * i CarCrplyy

£y ) b, 0,0
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L results

Multiplying equation (1) by u, and substituting A

In the stability equation

At B3 P it + B2 0

whore

i-A
Hp

’ﬁ:%
Hy

- C

C =—
Mo

D=D

f=u.bE

The damping and period of the lateral oscillation in seconds are

gliven respectlively by the equations

o _.0-69 %P
e
b
P = 6.28 "v°

w? v

where E!' and ! are the real and imaginary parts of the complex root

of stabililty equation (2).
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ANALYSTS

The necessary and sufficient conditions for neutral osclllatory
stability, as shown in reference 3, are that the coefficients of the
stability equation satlsfy Routh's discriminant set equal to zero

R = BCD — AD® —B2E = 0 (3)

. and that B and D have the same sign. The expression for R = 0 can
be derived by assuming that the stabllity equation has two roots A = * iw,

where ® 18 the angular frequency of the neutrally stable oscillation.

This agsumption is based on the fact that for the condition of neutral

oscillatory stability the real part of the complex root must be zero.

If A =1iw 1is substituted in the stability equation, the following two
equatlons are obtained: ’

N

ot —Co® + E=0 (1t)

—BwS + Do = 0 (5)

Solving equa:bio:i (5) for ©® and then substituting the result (a)2 = %.)
in equation (4) results in Routh!s discriminant

BCD — AD® — B2E = 0

It is seen from equa‘lﬁion (5) that o = \/-g is the angular fregquency of the

neutrally stable oscillation only when B and D are of the same sign
since ® must have a real value if the root A = % iw 1is to represent
an osclllation. If B andi D are of opposite sign and R =0 18

satisfied, the two roots of the stability equation given by A = % iw

are real, one positive and one negative. It is important to note that
the A, C, and E coefficients may be of opposite sign to the B and D
coefficlents, and neutral oscillatory stability willl still occur as long
Routhts discriminant is equal to zero and the D and B coefficients

are of the sams sign.

In general, tha R = O boundary in the .CnB,CIB plane has two
branches. The two branches result from the fact that R =0 isg =
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quadratic equation in CZB and thus has two CZB roote for every value

of CnB. Usually, the two branches can be approximated by simplified

expressions for R = 0. In certaln cases, however, which are discussed
in the section entitled "Test Functions,™ elther one or none of the
branches may be approximated.

Now, the condition R = 0 1is a necessary but insufficient condition
for neutral oscillatory stability. The simplified expressions, therefors,
which approximate R = O do not necessarily represent boundaries of
neutral oscillatory stability. Other conditlons, elaborated on in the
section "Validity of D =0 and Ry =0 as Neutral—Oscillatory—Stability

Boundaries,” must be satisfied before either expression represents a
valld boundary.

There are, therefore, two kinds of tests that must be made: First,
tests to determine whethsr R = O may be approximated by simplified
expressions; and, second, tests to determine which of these expressions
represents a boundary of neutral oscillatory stebility. The significance
of the lateral—stability boundaries 1s indicated by a discussion of the
modes of motion In the CnB,C-Lﬁ plane.

Derlvatlon of Simplified Expressions

Two of the most important stability derivatives affecting lateral
oscillatory stability are the directional-stability derivative CnB and

the effective—dihedral derlvative CZB. The boundary for neutral oscillatory

stability is usually plotted as a function of these two derivatives -
with Cn as the ordinate and CZ as the abscissa. The method used to

obtaln the neutral oscillatory stability boundary 1s first to substitute
the values of the mass and aerodynamic parameters of a specific airplane
in the coefflcients of the stabllity equation while maintaining CnB

and ClB as variables and then to calculate the Cl‘3 roots of equation (3)
for several values of CnB. For a given value of QnB, the expression
for R =0 18 a quadratic equation in CZB that is of the form

2
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For a very large number of cases, i1t has been found that the last term
of Routh's discriminant ZBQE, which contributes only to by and cj,

produces & negligible change in the expression

2
a'lCIB + "blCz13 + c-_L =0

\

If, therefore, the term BZE 1is neglected, equation (3) for Routh's
discriminant reduces to

R =D(BC — &D) = O (68)

Thus BC —AD =0 and D = 0 are the approximate factors of the
quadratic equatlion

2 -
a]_CZB + blC'LB + cq = 0

The expression BC — AD 18 henceforth called Rl.

. In order to simplify ths expressions for R; and D, the expected

range of values of mass and aerodynamic parameters for high—speed air—
craft were substituted in the coefficlents of the stability equation +to
determine which terms could be omltted without appreciably affecting

the values of Rl and D. The following simplified coefficlients were

obtalned:

A = 8u-b3<KX2KZ2 - KXZQ> i
2/ 2 '
B =-2u (KX Gy + xxgngcyﬂ + c.lpKza)
¢ = i (b & Cng — b C, +%C.C, +C 20Y _lc ¢
iy (HpEy Cng = MRyrCrg * 5 Cn O * C1 %y B~ 2 “np’ly

(w)
1}
P-4
Q
o
|
é"%
b?ql\)
S~
Q
o~
w
|
x
“a
o~
o]
|
R
ﬁ‘l
~=
=]
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o i
E=zZ0L (cnrcZB czrcnﬁ)

The expressions for Ry and D thus becoms

By = (#1Kgz = Ahg)Cog * |~ sz<2A3éL * Cszxz) - Kx2<‘°1 - Cszz2>]CnB

c
A 1%

b _ 2\ _ _

- BI‘;I?QI ¢ % ) C1,Cny, | = O (6b)

and \
D = A0y, "(Czp - QCLKXZ)Cnﬂ =0 - (6¢c)

where
_ e 2 2 2 A

_ A =Ky Cnr+2KX2KZ Cry + O Xy

Ay = Gy — 20/K,° > (6a)

D

B3 = KK, ~ Kyy©

The simplified expressions Rl =0 and D =0, as presented, are

applicable only to conditions of level flight or to conditions of small
angles of gllide or climb. Simplified expressions for conditions of
large angles. of glide or climb can be derived by a procedure similar to
the one presented.

Teat Functions

The approximate discriminants R; =0 and D = O are based on the -

agsumption that B°E can be neglected when Routh's discriminaent is set
equal to zéro. Thus, the simplified expressions for ths neutral—

oscillatory—stability boundary, Rl and D, should not be used if
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Including the terms BEE causes an appreclable change In the roots
of R =0. In appendix A test functlons are derived which indicatse the
incrementel chenge in the roots of R; =0 and D =0 due to the

terms B2E. TIf certain conditions placed upon these test functions are
satisfied, then R; and D can be used to calculate the R =0

boundary.

If, at a given value of CnB, the root of R; = O 1s denoted

by CZB = r, +the approximate deviation of this root from a root of R =0

is given by

_ el(e - I‘)
br = rld.l(d - I‘) + ey (7)

If Ar 1is emall, then Rl = 0 1ie & close approximation to cne branch
of R =0. A gultable criterion for this approximation is

51

0.01

IA

||

or

A

|a=|
whichever is ths larger.
Similerly if a root of D = 0 1s denoted by CZB =d, the apprqximate
deviation of this roé% from a root of R =0 ié glven by

e1(e — ad) (8)

Ad =
rldl(r —a) + CH

If Ad is emall, then D = O 18 a close approximation to one branch of
of R =0. A sultable criterion for this approximation is

5

or
<

|Adl 0.01

whichever is ths larger.



NACA TN No. 1727 13

The expressions for ry, 43, ey, r, 4, and e for use in
equations (7) and (8) are

= (g — )

\ o1 = Bk O 0o \
= Gl
SICH N
"7 e gy

where A, A,, and A3 are defined in equations (6d).

The value of CnB to be used in these test functions should be
selected from the probable range of CnB' of the alrplans for which the

lateral—stabllity analysis is to be made. Thus, the approximation
of Ry =0 and D=0 to R =0 1s determined in that reglon of

the an ’CIB plane pertinent to a particular analysis.

Validity of D =0 and Rl = 0 a8 Neutral—

Oscillatory—Stabllity Boundaries

As mentioned previousl'y, for R =0 +to be a boundary for neutral
osclllatory stability, the coefficienta B and D must be of the same
slgn. The three predominant terms of B contain the factors —Cnr,
—-CY , &and - C'L s respectively. For positive damping in roll, CZ

B P D

~
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is negatlive; and for positive weathercock stability (CnB positive),

CYB and Cnr are negative. Thus, B 1s positive in the usual case

where there is weathercock stabllity and damping in roll. Therefore, D
mist generally be positive in order that R = 0 be a neutral-stablility
boundary. If the exact boundary R = O has been calculated, it 1s
merely necessary to plot D=0 and R = 0O and note whethsr R =0 1s
located on the side of D =0 vwhere D is positive. A primary purpose
of the present paper, howsever, is to obviate calculatlon of the exact
boundery by the use of simplified boundaries together with test functlons.
A method to determineg the sign of D from the resulis of the simplified
expressions is therefore presented in the following paragraph.

.CnB
of the alrplane for which the lateral-stability analysis 1s to be ma.de)
let @ be a value of C-LB for which D =0 and d4!' be a slightly

For a given value of CnB (selected from the probable range of

different value for which R = RlD - BaE = 0. The substitution
of CZB = d' gives

2p(ar
p(ar) = BB
R, (ar)

The sign of D at the R = O boundary (cl 5 = d') is therefore

determined by the signs of E and Ry at d'. But slnce d differs
little from 4!, the signs of E(d) and R;(d) will be the same as
the signs of E(d') and R;(d'), respectively. Hemce the sign of D
at R =0 1is the same as the sign of E/Rl at D=0 (fig. 2); that

is,

If the signs of E and Rl are the same, D 18 positive and represents
a neutral—oscillatory—stability boundary; if E and Rl are of opposlte

sign, D is negative and then represents a boundary for which ths roots
of the stability equation are equal and opposite 1n sign.

The preceding analysis is applicable for the large majority of cases
where E(d') and R,(d') are of the sams sign as E(d) and R,(4),
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respectively. For these cases, the D curve is widely separated from
the T and Rl curves. If the D curve 1s close to either the .E

or Ry curve, the signs of E and R; should be determined at CZB = d4'.

However, a very good approximation to the value of d! can be obtained by
adding to 4 +the value of Ad calculated In the previous section entitled
"Pegt Functions.” Hence, the sign of D 1s determined from the signs

of E and ,Rl at ng = d + Ad.

If the valus of CzB at which Ry = O 1s substituted in D and

the resultant sign 1s positive, R; = 0 1s a neutral-oscillatory—
stability boundary.

It is Interesting to note that for some alrcraft, the D = 0 curve,
which approximates one brench of the R = 0 curve, is a neutral-—
osclllatory—etabllity boundary over one section of the curve and a
boundary for equal and opposlte real roots over the remalning sectian.
This division of the D = 0 curve into two distinct parts is caused by
a change in slgn of \the D coefficlent at some point on the curve. IFf,
as has been found in a large number of cases, Ry, 1is positive for all

values of CnB and CIB on the D =0 curve, the sign of the D coef-—-

ficient depends only on the slgn of E at thess points. As shown in
figure 3, therefore, the point of Intersection of the curves D = 0

and B = 0 18 the point of separation of the D = 0 curve Into two
characteristically different sectlions. For polnts on the hatched side

of B =0, the E coefficient 18 negative and, therefore, the dashed

part of D =0 1s a boundary of equal and opposite real roots. Converssly,
on the unhatched slde of E = 0, the E coefficient 1s positive and the
solid part of D = O approximates a boundery of neutral osclllatory
stability.

For small positive or negative values of CnB and negative damping

in roll, it is possible for B +to be negative. A similar analysis 1s
applicable to this case where nmow D must be negative to satisfy the

necessary condition that R = O is a boundary of neutral oscillatory

gtability.

In general, when the simplified expressions are used to obtain a neutral—
oscillatory—stablility boundery, the procedure to be used is as follows:

(1) For a given value of Cn , B8elected from the probable range
of C, ng of the airplane for which the 1ateral—stability analysls 18 to

be made, calculate r and d, the C roots of Rl =0 and D =

‘g
respectively.
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(2) Determine the value of Ar and Ad by substituting the results
into the test functions.

(3) If the criterions for Ar and Ad as set forth in appendix A
are satlsfied, consider Ryj»= 0 and D =0 close approximations to

the R = 0 boundary.

. (k) In order to determine the validity of R; = O as a boundary of
neutral osclllatory stability, substitute the given value of -CnB
and CzB =r into the D coefficient. (If the resulting sign is

positlve, Ry = O approximates a branch of the neutral-oscillatory—
stability boundary.) ’

(5) In order to determine the validity of D = O as a boundary of
neutral osclllatory stability, substitute the glven value of CnB

end Cyq = 4 imto Ri. (If the resulting sign is positive, D = O

1
approximates a branch of the neutral-oscillatory-stability boundary; if
the resulting sign is negative, D = 0 approximates a boundary of equal
and opposite real roots.)

Nature of Modes of Motion in the CnB,CzB Plane

In this sectlion, the changes in the roots of the lateral—stability
equation, which’ occur upon crossing the varlous stability bounderies, are
discussed according to the principles of the theory of equations as
given in references 3 and 4. The solution of the lateral-stability
equation gives four roots which maey be four real roots, two pairs of
conjugate complex roots, or two real roots and one conjugate complex pair.
A pair of complex roots indlicates an oscillatory mode and a real root
indicates an aperiodlic mode. If the airplane 1is disturbed from its
trimmed condition by an arbitrary disturbance, the subsequent motion is
compounded of these modes in different proportions. The method of calcu—
lating the different proportions of the modes is presented, for example,
in references 5 and 6. Such calculations of the motion for numerous
points throughout the CnB,C-LB plane would be very laborious. It is

more practical, therefore, to Investigate merely ths types of mode§~that
may be expected throughout the CnB’CZB plane as indicated by the

stability boundaries. The calculation of the motion could then be limited
to several points of interest.

Consider a case where the neutral-oscillatory—stability boundary Ry = O

and the spiral—stability boundary E = O are located in the flvst quadrant of
figure 4(a). The area between the two boundaries is a region of complete
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stability. The roots of the stability equation for combinations of Cp
and CZB in this region; such as point A in figure 4(a), are two negative

real roots and one conjugate complex pair with the real part negative. On2
of the real rocte which is numerically small corresponds to the spirally
stable motion of the airplane. The other real root céorresponds to the
heavy damping of the pure rolling motion. The complex roots with ths real
pert negative show that the so—called Dutch roll oscillation is stable.
Pagsing through the E = 0 boundary from point A to point B causes the
spiral mode to becoms unstable; and ecrossing through the Ry = 0 Dboundary

from point A to point € causses the oscillatory mode to becoms unstable.
The second branch of the R=0 boundary plotted in the second quadrant
as D =0 i1s not a neutral-oscillatory—stability boundary but rather a
boundary for equal and opposlte roots as determined by the analysis
presented in the section entitled "Validity of D =0 and Ry = O as

Neutral—Oscillatory—Stability Boundaries.” The roots of the stability

equation for combinations of CnB and CZB on this boundary are two equal

and opposite real roots and a pair of complex roots with the real part
negative. The positive real root is the spirally unstable mode, and the
negative real root is the damping—in—roll mode. The oscillation continues
to remain stable even though the D coefficient is negative.

For the case where one osclllatory—stebility boundary D = O " appears
in the first quadrant and another oscillatory stability boundary Ry =0

is in ths seconi quadrant, (fig. h(b)), thé period of the neutrally stable
oscillation i1s much greater on D = O +than on Rl = 0. This fact can be

shown to be true by investigating the angular frequency of the neutrally
gtable osclllation for points located on ths Ry =0 and D =0 boundaries.

As shown previously, the angular frequency o 15 equal to \D/B; and
_therefore, since the boundary D = O approximates one branch of R = O,
the angular frequency for points on that branch is very emall. For
combinatlions of GnB and CIB on R, = 0, -ths angular frequency is much

greater. In general, D = 0 18 a neutral-oscillatory—stability boundary
/for a long—period oscillation. The roots at point A of figure 4(b) have
the same character as the roots at voint A of figure 4(a), that is, two
negative real roots and one pair of conJugate complex roots. At point B
the roots of the lateral-stability equatlon are two palrs of conjugzate
complex roots. It is interesting to note that the boundary for two equal
roots occurs between point A and point B and can be considered the boundary
beyond which two pairs of complex roots exist. Reference 4 shows that for
a quartic equation

L

A +B3 + O+ DA+ E =0
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the boundary for equal roots is obtained by setting the discriminant

~ 43 — 27¢2
equal to zero, where
ce
P =BD — 4AR — =~
3
and
2y , BOD , BACE _2c3
Q = —B°E + —— = 3 5

Between this boundary and D = 0, +the period of the stable oscilletion
which corresponds to the newly formed pair of complex roots is longer
then the period of the oscillation which corresponds to the other pair
of complex roots. As CZB is increased to point C on the unstable side

of D =0, the newly formed long—period osclllation is the one that
becomes unstable whereas the short—period oscillation remains stabls.

At point D the roots consist of a spirally unsteble mode, a stable

mode due to the derivative CZ » &and a stable osclllation which becomes

unsteble in passing through Rl 0. to point E.

Figure 4(c) represents the case where both Ry =0 and D=0

appear in the first quadrant but anly R, 1s a neutral-oscillatory—

stability boundary. The curve D = O 1is the boundary for two equal
and opposite real roots. Point A once again has two real negative roots
and a palr of complex roots with the real part negative. At point B, on
the unstable side of Rl = 0, the real part of the complex roots is

posltive and Indicates an unstable oscillation, whereas the two real
roots are stlll negatlive. The boundary for C = O 1s between R =0

and D = 0. Soms Investigators of lateral staebility have thought that

a radical change occurs in the roots upon crossing through this boundary.
The calculations indicate,however, that the roots do not vary appreciably
upon passing through C = 0. At D = 0, however, there must exist two
equal and opposite real roots; this condition is possible only if the
complex roots divide Into real roots since the other two real roots are
negative in sign. The calculation of roots at point C indicate that the
complex roots had divided into two real positive roots, one of which was
exactly equal in magnitude to one of the negative roots. Agein, the
boundary for two equal roots, located between C = 0 and point C, would
determine the combination of CIlB and ClB where the complex roots

divide into two real roots.
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There have been sBeveral cases for which a neutral-osclllatory—
gtability boundary did not exist in the CnB,CzB plane. An analysis of

these cases Indicated that the boundary for equal roots was in the
osclllatorily stable region and had divided the stable oscillation into

two subsiding modes. The neutral—oscillatory—stabllity boundary, therefore,
would not have any significance.

" RESULTS AND DISCUSSION

The slmplified expressions were used to calculate Rl =0 and D

and the results are compared with the results of the calculation of R =0
based on the complete expression. WNot only do Rl =0 and D =0 show
good agreement with R = 0 (figs. 5 to 13) but the comparative simplicity
of the Ry and D expressions allows ldentification of the major

paremoters that affect the stabllity boundarles.

Il
O
-

Effect of Cn — 20;K,° on the Branch of R = 0

Approximated by D =0

Reference 2 shows that a steblllzing shift in the R = O Doundary
is obtained when CnP is Increased in a positive direction up to a certaln

value, but further increases in the positive dlrection cause a destabl—
lizing shift in R = 0. The effect of varying Cnp on the R = 0 curve

i1s presented in figure 5 for a model tested in the Langley free-flight
tunnel. The figure illustrates very good agreement between R = O and
the simplified expressions R; = 0 and D = 0. The expression for D =0

1s

(cz - QCI.KXZ)Cn

~\ P
IB o

Co, — 20rky

B

C

which indicates that for positive CnB when the numerator 1e negative in

slgn,the D = O boundary is in the second quadrant for negative values
of Cnp — 2C;K;° = Ap and in the first quadrant for positive values of A,.

For the cases of negative A2 presented in figure 5, the D = O boundary

would appear in the second quandrant. It can be shown, however, by the metho¢
described in the section "Validity of D =0 and Ry = O as Neutral—

Oscillatory—Stability Boundaries” that D = 0 in the second quadrant is not ¢
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neutral-oscillatory—stabllity boundary and hence is not plotted in
figure 5. However, as Cnp is Increased In a positive direction, where

now Ap is positive, an increase in the positive value of Ay causes

the D = 0 boundary to shift upward in the first quadrant in a
destabllizing dlrectiom.

From the results shown in figure 5, 1t is seen that for the cases
of Cnp equal to 0.30 and 0.40 only the solid—line part of

the R = 0 curve in the first quadrant (the branch which may be approxi-—
mated by D = 0) is a neutral—oscillatory—stability boundary. The short—
dash—line part of R = 0 1s & boundary of equal and opposite real roots.
The reason for this-division of the R = 0 curve into two parts is

discussed in the sectlion entitled "Validity of D = 0 and R, =0 as

Neutral-Oscillatory—Stability Boundaries™ and is 111lustrated in figure 3.

Effect of Cnp —-2CﬁKZ2 on the Branch of R =0

Approximated by R; =0

The important effect of Cnp on Ry =0 occurs only in the coef—
ficlent of the CZB term, AiKXZ —-A2A3, in which Cnp affects only

the factor A,. The sign of A3 is always positive and the sign of Ay
is negative for posltive CnB. By definition, ZKgy 18 positive if the

principal axis is above the flight path at the nose of the airplane as.
is the case for the curves presented in figure 5. In gemeral, for
posltive CnB, the expression of R; = O which does not include

any CI terms 1s positive and,except for one term,is independent
B

of 'Cnp. If, therefore, the coefficient of CIB is positlive, Ry =0
i8 in the first guadrant; whereas 1f the coefficient of Czﬁ is
negative, Ry = O 1s in the Second guadrant. As Cnp increases in a

posltive direction and A2 becomes more positive, the coeffliclent of CZB

becomes more negative and Rl = 0 1n the second quadrant shifts upward

in g degtabllizing direction. If A2 18 negative but the absolute value

of A2 Increases, as In going from Cnp = 0.15 +to Cnp = =0.10 1n figure 5,
the coefficient of CZB becomes more positive and Rl in the first

quadrant also shifts upward in a destabilizing direction. Thus the results
indicate that increasing the absolute value of Ap has a destabilizing

effect on the neutral—oscillatory—stability boundary.
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According to a previous discussion herein, variations in CnP that

maintain A, constent cause no shift in the D = 0 boundary$ -When,
therefore, R = 0 1is approximated by D = O, such changes in Cnp

and Ki should have a negligible effect on the R = 0 boundary. In
order to .test this point, calculations were made for a free—flight airplane
model for Cnp verying from 0.30 to 0.63 while simultansously

varying Kie in order t0 maintain the same positive value of A,. The

results showed the expected insensitivity of the R = 0 boundary to
these changes. -

It should be remembered that D = 0 in the Pirst quadrant is the
neutral—-oscillatory—stability boundary for the long—period oscillation;
and if instabllity were to occur, the pilot might not find this type
of Instabllity difficult to control.

Effect of Cnr’ CYB’ and Ki on the Brench of R = O

Approximated by D =0

The D expression indicates that the D = 0 boundary is inde—
pendent of the derivatives Cnr end CYB and the mass parameter Kx-

Pigures 6 and T show a comparison of the results obtained by the complete
calculations with D = 0 for the cases in which CnT end CYB’ respec—

tively, were arbitrarily doubled 1n value. As noted in the figures, Cnr
and CYB have a negligible effect on the boundary. The effect of Ky

on the brench of R = 0 which may be approximated by D = 0 1s shown in
figure 8. Complete calculations-were made to obtain the R = 0 curves
for the previously discussed free—flight alrplane model. The value of Ay

uged in these calculations was 0.17. For purposes of comparison, Ki was

arbitrarily increased by a factor of 2.5. Again the results show
practlcally no effect of Ky on this branch of R = 0, as 1s indicated

by the simplified expression D = 0. For the case-dlscussed in figures 6
to 8, the branch of R = 0 approximated by R; = 0 is in the second

quadrant and has little practical importance. Hence, the effect of these
parameters on R; was not determined for this particuler case.
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Effect of Product of Imertia on the Branches of R =0

Approximated by Ry =0 and E =0

The product of Ilnertia has been shown to have a very pronounced effect
on the lateral stability of present—day airplanes designed for high—speed
high-eltitude flight (references 1 and 7). The importance of the product
of inertia is illustrated in figure 9(a), which presents the R = 0O
boundaries of the hypothetical alrplane discussed 1n reference 1 for two

angles of inclination of the principal axis relative to the flight
path, n =0° and 3 = 2°. Calculations were also made for these cases

using R, = 0; and the results presented in figure 9(a) show the same

marked stabilizing shift In the boundary, caused by the 2° inclination
of ths principal axis above the flight path, as obtained by the complete
calculations. The value of A, for the R; =0 calculations was —0.18.

The value of was then increased so that A, was equal to 0.13

(fig. 9(b)). In this case, D = O appears in the Pirst quadrant
and Ry = 0 1is In the second guadrant. Although both D = 0 and Rl =0

are valld boundaries, ths results are discussed only for the effect of
product of inertia on D = 0O since only the an’CZB combinations in the

first quadrant are usually of practical significance. Calculations
for 11 =0° &and 7 =2° were made using D =0 and R = 0. Although
the product—of—inertia factor ZKygy does appear i1n the D expression

(in the term -2C;Kxy), an examination of D indicates that this term
could have only a negligible effect on D = 0 vwhen Clp 1s much greater?
than 2CKy,, as is usually the case. TFigure 9(b) shows that the results

Predicted from D = 0 egree very well with the results obtalned from the
complete calculatlions.

Effect of Radii of Gyration on the Branch of R =0

‘Approximated by Ry = O

Figures 10 to 12 are presented for the purpose of showing the close
agreement between results obtained by using R; = O and results obtained
from reference 1. The three figures illustrate the effect of the radil
of gyration in roll and yaw kKo and kZo’ respectively, on the neutral-—

oscillatory—stability boundary. Figure 12 emphasizes the fact that the
simplified expression is sufficiently accurate to predict the effect
of kX on the oscillatory—stebillty boundary throughout the entire

o]

renge of variation of kxo.
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Effect of Wing Loading end Altitude on the Branches of R =
Approximated by Ry =0 and D=0

The effects of wing loading end altitude on the .neutral—oscillatory—
stabllity boundaries were determined simultaneously by considering
variations in the relative density factor Hp Dbecause up, varies

directly with both wing loading and altitude. - An examination of the
expreseions Ry = O and D =0 indicated that increasing My causes

a slight destablilizing shift in R; = O but does not affect D = 0
since Ky does not appear in the expression for D = 0. The trend shown

by these results agrees with the results found in referencs 1 cancerning
the effect of p3 on the neutral-oscillatory—stability boundary.

Comparison between Neutral-Oscillatory-Stebility Boundaries
Obtalned by Exact and Simplified Expressions for é
High-Speed Experimental Airplane

Some of the neutral—oscillatory—stability boundaries obtained from
recent calculations for several experimental high—speed airplanes have
appeared much different from the conventional stebility boundaries.
Because of the complexity of the complete expression for R = 0, it
ig difficult to determine the reasons for such unusual looking curves
end the significance of the boundaries. From the simplified expressions,
however, a complete analysis of the boundaries can be easily obtained.
The R = 0 boundaries of an experimental airplane are shown in '
figure 13(a). In additlon to the R = O boundaries, the D = O boundaries
are also plotted in the figure. As mentioned at the outset of the
paper, R = 0 18 a neutral-oscillatory—stability boundery only if D
is positive. The. R = O boundaries on the hatched side of D = 0 are
not therefore neutral-osclllatory—etability bounderies. The boundaries
for the same -experimental airplane calculated from the simplified expres—
sions are plotted in figure 13(b). The Ry =0 &and D =0 boundaries -

which are not neutral-osclllatory—stability boundaries, as determined by
the analysis presented In the sectlien entitled "Validity of D = 0O

- and Rl =0 as Neutral—oscillatory—Stability Boundaries," are shown as

dash—1line curves in the figure. In D = 0, the coefficient of C,

B
becomes zero at Cnﬁ = 0.056 and, therefore, the D = O boundary

approaches positive infinity in the second quadrant at CnB = 0.056.
As Cnﬂ _Increases above 0.056, D =0 returns from negative Infinity

and eppears in the first quadrant. Similarly, Ry = O approaches
negative Infinity when CnB is approximately equal to 0.25 since the

coefficient of CZB in ,Rl =0 (AiKXZ —-A2A3) 1s zero at this value

of Cn . Above Cn of 0.25, Rl = 0 rebturns from positive infinity
: B
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and appears in the second quadrant. It is necessary to note that in

figure 13(a) the neutral—oscillatory—stability boundery 1s one continuous
curve; whereas in figure 13(b) this boundary is composed of two sectians,
one section of Ry = O and the other section of D = 0. The latter fact

provides the important information that the peried of the oscillation
which becomes unstable upon passing through the D = 0 boundary 1is
comparatively longer than the period of the. oscillation which becomes
unstable upon passing through the Ry =0 boundary.

CONCLUSIONS

The following conclusions were reached from a theoretical investi—
gation of a simplified method for obtaining and analyzing the neutral—
lateral—osclllatory—stability boundary:

1. A necessary condition for the lateral-neutral-oscillatory—
stability bounderd is that R = D(BC — AD) —B2E = 0, where A, B, C, D,
and E are the coefficients of the lateral-stablility equation. The
expression for R = O 18 approximated by the expressions D =0
and Ry = BC — AD = 0. Criterlons are derived which, if satisfied,

indicate that the approximate expressions satisfy the necessary and
gufficlent conditions for a neutral-oscillatory—stabllity boundary.

2. If D=0 and Ry =0 approximate R =0, the curve D =0

represents the neutral—oscillatory—staebility boundary for the oscil—
lation which has a period comparatively longer. than the period of the
oscillation for which R; = O 1s the boundary.

3. In general, the results of the computations obtained from Ry =0

and D = 0 ghow very good asgreement with the results calculated by the
exact expression for R = 0. Specifically, the results of the
investigation indicated:

(a) An increase in the absolute value of the parameter Ao,
2
which 1s equal to CD-p - 2CLKZ (where ,CD-P 1s the yawing-moment

coefficient due to rolling-angular-velocity factor, Cy, is the trim
11ft coefficient, and K; 1is the redius of gyration in ya.w) causes

a destabilizing shift in the branches of R = O approximated by D =

(b) The branch of R = O approximated by D = 0 mainly depends

upon the parameter A, and the damping—in-roll derivative CZ . The
P

product—-of—inertia term KXZ also appears in D, Dbut it has a

negligible effect on. the branch of R = 0 approximated by D

I
o
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(c) An increase in the relative—density factor Hy, causes &
destabilizing shift on the branch of R = 0 approximated by Ry = 0
but does not affect the branch of R = 0 approximated by D = O.

., Thé neutral-oscillatory—stablility boundaries computed from ths
simplified expressions show excellent agreement with the dorresponding

boundaries presented  in NACA TN No. 1282.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

lLangley Field, Va., August 4, 1948

——————————— e
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APPENDIX A

DERIVATION OF TEST FUNCTIONS Ar AND Ad

For a given value of Cp g gselected from the probable range

igti:he alrplane for which the lateral—stabllity analysis 1s to be
Ry = I-]_C-LB + T'o %—; =ry (CZB)Rl=o = —I‘IE =
Pt T rga);—;_l (CZB)D=0=:‘1(11_2=

BZE = elC-LB + oo %j—f = e (C-LB)BZE:() = %2_ =

NACA TR No. 1727

of CnB

made,

As shown in figure 14 the exact roots of R = RD - BaE =0 occur at

2
the intersection of the straight lime B E with the parabola RlD.

the vicinity of the point CZB =r, at which R; =0, the curve

In
R;D

is approximated well by a stralght line tangent to the curve at Czﬁ =7,

that is,
[ RD
RiD = BC_— (C-LB - r) = (— rod; + rld?)(CZB - r)

1
B/R,=0

If there is a root of R =RyD ~B®E = 0 near R, = 0 (that is,

intersects R;D mnear the point r, in fig. 14) then

R=(-rn + r_ldz)(ClB - r) - eleB

if BZE
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Thus, the approximate deviation of & root of R =0 from Rl =0 1s
given by

rie, — rga’l
or = (CZB - r) - rl(rld2 —rpdy — el)

el(e -r)
= Al)
rldl(d. - r) + oy (

i

If this deviation, Ar, 1s small, then Rl = 0 1is a close approximatlion
to cne branch of R = 0. A sultable criterion for this approximation is

A
A

*|

or

A

0.01

e
whichever 1is the larger.

In the case of D =0, a similar analysis results in the test
function

el(e —a)

Ad =
rld.l(r - d.) + Bl

(A2)

If Ad 1s small, D =0 may then be comsidered -a close approximation '
to the other branch of R = 0. A suitable criterlion for this

lAd‘§ 0.01

or

whichever 1s ths larger.
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The expressions for r,, d;, and e; for use in equations (Al)
and (A2) are '

Ty = Bup(AKyy, — Aphs)
a = wphy
e = eubAl2chnr -
where
A = + ZKXZKZE + Czp
= C. — 2C;K,2
Ao = Cp, Cikz

2

Ay = Ey'K," —Kpy
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Figure 18,- Oscillatory stability boundaries for an experimental high-speed airplans.
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(b) Ry =0 and D =0.
Figure 13,- Concluded,
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B Roots of R= RD-B*E=0
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Figure 14,- Graphical representation of the roots of the R = O boundary.
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